Demonstration of reconfigurable joint orbital angular momentum mode and space switching
نویسندگان
چکیده
We propose and demonstrate space-selective switch functions employing orbital angular momentum (OAM) modes in the space domain for switching network. One is the switching among different OAM modes having different spatial phase structures, called OAM mode switching. The other is the switching among different space locations, called space switching. The switching operation mechanism relies on linear optics. Reconfigurable 4 × 4 OAM mode switching, space switching, and joint OAM mode and space switching fabric using a single spatial light modulator (SLM) are all demonstrated in the experiment. In addition, the presented OAM-incorporated space-selective switch might be further extended to N × N joint OAM mode and space switching with fast response, scalability, cascading ability and compability to facilitate robust switching applications.
منابع مشابه
Reconfigurable switching of orbital-angular-momentum-based free-space data channels.
Light beams can carry orbital angular momentum (OAM) such that a helical phase front twists along the direction of propagation. OAM beams have been demonstrated in a wide variety of applications and have been found to offer a new orthogonal degree of freedom for multiplexing independent data streams for high-capacity point-to-point optical communications. However, to enable their efficient use ...
متن کاملReconfigurable 2 × 2 orbital angular momentum based optical switching of 50-Gbaud QPSK channels.
We experimentally demonstrate a reconfigurable 2 × 2 switch for orbital angular momentum (OAM) multiplexed data-carrying optical beams. The switch can be configured to operate in either 'cross' or 'bar' state for each of the input OAM-multiplexed channels. The switching operation is demonstrated by operating the switch in five different configurations for the four OAM-multiplexed 50 Gbaud QPSK ...
متن کاملFast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters.
The ability to rapidly switch between orbital angular momentum modes of light has important implications for future classical and quantum systems. In general, orbital angular momentum beams are generated using free-space bulk optical components where the fastest reconfiguration of such systems is around a millisecond using spatial light modulators. In this work, an extremely compact optical vor...
متن کاملStudy on Generation of Higher Order Orbital Angular Momentum Modes and Parameters Affecting the Vortex
In this manuscript, higher-order Orbital Angular Momentum (OAM) modes and parameters affecting vortex in the radiation pattern have been studied. A uniform circular array resonating at 10 GHz frequency is formed using eight identical rectangular patch antennas. Three uniform circular arrays are analyzed, simulated, and fabricated for OAM modes 0, +1, and -1 respectively. The higher-order OAM mo...
متن کاملCapacity limits of spatially multiplexed free-space communication
Increasing the information capacity per unit bandwidth has been a perennial goal of scientists and engineers1. Multiplexing of independent degrees of freedom, such as wavelength, polarization and more recently space, has been a preferred method to increase capacity2,3 in both radiofrequency and optical communication. Orbital angular momentum, a physical property of electromagnetic waves discove...
متن کامل